NASA Technical Memorandum 100687

A Computer Code to Process and Plot
Laser Altimetry Data Interactively
on a Microcomputer

H. G. Safren and J. L. Bufton
Goddard Space Flight Center
Greenbelt, Maryland

NASA

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

1987

CONTENTS

Page

INTRODUCTION ..iieeeecesosaccssocscassesssessesocassosscsascassssssssssnsssccanss |
DESCRIPTION OF PROGRAM t4cveesescecasaccccascscascsccsosososcssnanasacacacssscocs 2
Preprocessing ROULINE eeeessecceoseesseonsanancsassssnssscscsscancancscsascsscscsce 2
Processing ROULINE e seeecesocscecccecsssnssoscocsssssssosssssncvososssscscscssssnes 2
Plot ROULINEG eoeeeeccevoscccessssostassseoosssstssssocaasssccsossasscccssssssonsos
Auxiliary Routine to Inspect Raw Data FileSeceeceececossectsscacocctsccoccesssessoccses 3
Auxiliary Routine to Create List of Raw Data FileS eseseeoseosscosesossscvsscasssascnsss &
Command File to Process and Plot Raw Data vevecessssocecacscsccccccascccccssossseee 4
Command File to Plot Previously Processed Datd ceeesosssescsscsssssssssssssssssssssces 4
PROGRAM SIZE AND OPERATING SPEED cceesecccccccccosossccccscssssnanssscsccncnces &
HOW TO USE THE PROGRAMuiuiieeurueerieensnsnssecscnsssnossasessssosensnnana 4
SOME EXAMPLES OF TERRAIN PLOTS PRODUCED BY THE PROGRAM «¢.cccecacnsescoccasess 5
PROGRAM LISTINGS 4eveeeeesoacnecescessassscessasensssnsssasessssnsssassssscacssce I
Preprocessing Routine to Unpack Raw Dataseeeeeeacsseessscecrssssccssesecccnnssscsnsee 9
Processing ROULINE eeeeceecconnsssnesasccsseasasnscssnsssessscsesescasssssscscscncas 15

Plot ROULINE ceeeeeeeceocencanceoocanoanseccsccscacssscososssosssonssocsscssassse 2
Auxiliary ROULINES 4uevveenaneeeeseeacacscaccccesscssccsccosssccscocsssssssscccces 34

Command Files 0900600000000 0000000000000008000060000808060000 0060000000000 c000000ss00BLDS 39

PRECEDING PAGE BLANK NOT FILM-D

il PAGE _[]_ INTENTIGNALLY RLANK

A COMPUTER CODE TO PROCESS AND PLOT LASER ALTIMETRY DATA
INTERACTIVELY ON A MICROCOMPUTER

H. G. Safren and J. L. Bufton

INTRODUCTION

The computer program described in this report was developed to process and plot data taken with
a laser altimeter currently under development in the Instrument Electro-Optics Branch of the God-
dard Space Flight Center.

The altimeter is being tested by flying it in an aircraft at about 30,000 feet over mountainous ter-
rain. The raw data consist of pulse timing information and round trip return times; these must be
converted into along-track position information and ground height above sea level. At the present
stage of development there is no position or attitude information for the aircraft, so the data must be
processed on the assumption that the aircraft is flying a straight path at a constant altitude and that it
maintains a horizontal attitude while data are being taken.

The computer program consists of three main routines, plus two auxiliary routines and various
command files to execute the routines in the proper sequence. The first main routine unpacks the raw
data, which are stored two numbers to a byte. The second routine adjusts the data point times, which
are given only to the preceding integer second at present, by using the fact that the time between laser
pulses is constant, and then converts the pulse times and the return times into along-track distance
and ground height. The third routine plots the processed data to show ground height versus along-
track distance; in other words, it shows the terrain profile along the aircraft’s path. The auxiliary
routines allow the user to inspect raw data files and to create a list of such files for use by the main
routines. Each raw data file consists of four hundred and fifty data points; each data point consists
of the time of day and the return time of a laser pulse.

The computer program is implemented for a specific microcomputer system —a Digital Equip-
ment Corporation 11/23, using DEC’s RT11 operating system, with dual, 8-inch floppy disk drives, a
10 megabyte RLO2 hard disk and a VT100 terminal retrofitted with a graphics enhancement board
manufactured by the Digital Engineering Corporation (Sacramento, CA). The program uses a plot
package developed specifically for this computer system by the author, so that the program cannot be
adapted to a different computer without replacing the plot routine. The program is highly interactive,
and uses many features of the microcomputer to achieve a high degree of user control over the plot
displays.

The three main routines and the two auxiliary routines reside on a floppy disk, called the program
disk. Data sets are also placed on floppy disks. The two command files are placed in a different loca-
tion (a hard disk), because they direct the mounting of the program and data disks and thus must
always be accessible.

The plot routine has a kind of zoom capability; the user may select any part of the data and replot
only that part. Thus the plot may in effect be expanded to show any section in greater detail. In addi-
tion, the vertical axis scale may be changed until the plot has the appearance desired by the user.
Thus, the terrain profile may be shown in one-to-one scale to give a real picture of its appearance, or
it may be exaggerated vertically to any degree to clearly show height variations. Provision is also
made to allow the user to interactively edit the data set by deleting any data points which appear to be
spurious; this eliminates the necessity of constructing complex algorithms for editing out undesired
data points. Besides simplifying the code, the interactive editing probably is more effective, because
the user can look at the plotted points and easily see which points are spurious.

DESCRIPTION OF PROGRAM

Since the program consists of three independent
routines and two independent auxiliary routines, with
command files to execute them in the proper sequence,
the simplest way to describe the program is to describe
each component separately.

Preprocessing Routine

This routine, called UNPACK, was adapted from an
existing routine which had been written to unpack the
raw data, which are stored two integer numbers to a byte.
Each raw data file contains 450 data points; associated
with each data point is certain other system information
which we have no occasion to use here.

The raw data files are stored on floppy disks, in the
order in which they were taken during the flight. The first
disk contains a special file which sequentially lists all the
raw data files for that flight, along with the sequence
numbers of the disks on which they reside. The UN-
PACK routine queries the user for the sequence numbers
of the first and last files to be processed; any contiguous
subset of the data may be chosen. These files are then
treated as a single set of data and are processed together;
UNPACK automatically reads and unpacks the chosen
files, in sequence, from the proper disks, instructing the
user to mount disks when necessary. The entire set of un-
packed data from all the chosen files is placed into a
single file, for later use by the processing routine PRO-
CES. This file is placed in a standard location (the Digital
Equipment Corporation RL02, a hard disk drive) and is
given a standard name, because the processing routine
PROCES is coded to operate on a standard file.

Processing Routine

This routine, called PROCES, operates on the file of
upacked data created by the preprocessing routine UN-
PACK. PROCES begins by asking the user to specify the
values of several system parameters which are needed to
process the data: the altitude above mean sea level of the
ground point at which the first data point is taken, which
is needed to compute ground heights along the flight
path, the aircraft speed and the value of the effective in-
dex of refraction over the vertical path of the laser beam,
which may be taken to be very nearly unity. These
parameter values are then written as a header to the file
which is to contain the processed data.

PROCES then reads the unpacked data in groups of
450 data points, processes them and writes the processed
points (each of which consists of the along-track distance
and the height above mean sea level of the ground point)
to the file of processed data.

The processing is done in several steps. The first step

is to adjust the times at which the data points are taken.
This is necessary because each time is given only to the
preceding (integer) second, and about seven data points
are taken each second, so that several data points will
generally have the same time in seconds associated with
them. To improve these times, PROCES finds the first
and last data points (in the group of 450 points) for which
the value of seconds (the time is given in integer hours,
minutes and seconds) changes; we will call these points
point a and point b, for convenience. Assuming tem-
porarily that the integer second values associated with
points a and b are exact, better estimates are calculated
for the times for the first and last points in the group (of
450 points) by assuming that seven data points are taken
per second, which is a good approximation. For example,
if point a happens to be the third point in the group, then
the improved time for the first point would be calculated
by subtracting 2/7ths of a second from the time for point
a. The time between data points, which we will call delta,
is then computed by dividing the difference of the cor-
rected times of the last and first points by 449. Using this
value of delta, improved time values for all of the 450
points are computed by assuming that the time originally
associated with point a is exact, and adding or subtrac-
ting the appropriate number of deltas to get the time for
each of the other points.

The next step in the processing is to convert the data
times and the pulse round trip times to along-track
distance in kilometers and height of the ground point
above mean sca level in meters. These conversions are
straightforward, and are clearly explained by comments
in the program listing.

In the raw data files, there are some points which
were clearly bad; these are marked in the raw data by
assigning a zero to the pulse return time. These points are
used by PROCES in the processing, because drop-
ping them would destroy the sequence of data point
times, but they are not written to the file of processed
data. The processed data file is stored in a standard loca-
tion (the Digital Equipment Corporation RL02 hard disk
unit) and is given a standard name, because the plot
routine PLOT is coded to operate on a standard file.

Plot Routine

This routine, called PLOT, operates either with a file
of processed data created by PROCES or with a file of
processed and possibly edited (by removing spurious data
points) data created by PLOT itself in a previous plot-
ting/editing session. In either case, the file is stored
in a standard location (the RL0O2 hard disk unit) and is
given a standard name, because PLOT is coded to
operate on a standard file.

PLOT begins by reading the header of the processed
file, which contains the values of the system parameters

used in creating that file, and displays them on the screen
for the user. PLOT then proceeds to create an initial plot.

The initial plot shows the entire set of data in the pro-
cessed file on one plot. If the flight path was a long one,
the terrain profile shown on this plot will be very com-
pressed along the horizontal axis. This initial plot allows
the user to scan the terrain profile and choose which sec-
tions of it he wishes to examine in more detail.

At this point the user is presented with a sequence of
three options; any, all or none of them may be chosen.
The options are, in order:

1. Remove any points deemed to be spurious, by us-
ing a movable crosshair to identify the points to
be removed;

2. Zoom in on any desired section of the plot by
specifying a subrange (of the along-path distance)
to be plotted; the sub-range may be specified
either by typing the values of the end-points or by
pointing to them with the movable crosshair;

3. Choose a vertical scale. There are three sub-
options for choosing the scale:

a. Use a standard scale, which extends from 100
meters below the lowest ground point (in the
subrange to be plotted) or sea level, whichever
is less, to 1,000 meters above the highest
ground point (this option must be chosen if
the user wants to display all of the outlying,
spurious points, because otherwise they might
be automatically clipped and not displayed);

b. Define a new vertical scale, by typing the
lowest and highest elevations (below or above
sea level) to be displayed;

¢. Keep the present vertical scale.

If none of the three options are chosen by the user,
the current plot is held on the screen until the user types a
“G” (for “go”) at the keyboard. If one or more of them is
chosen, PLOT automatically erases the current plot and
replots the data (either all of it or whatever subrange
might have been specified by the user), in accordance
with the user’s instructions. For example, the new plot
will not show any spurious points that were removed, and
it will plot only the chosen subrange of data with the
chosen vertical scale. At this point the user will again be
presented with the above three options; this cycle will
continue until the user chooses none of them. PLOT
remembers the options that were last used; thus if an op-
tion is not chosen, the next replot will use the most
recently specified values. For example, the user may
repeatedly replot with different vertical scales; the
subrange will remain the same until he changes it. Also, a
larger “subrange,” as well as a smaller one, may be
specified.

If none of the three options is chosen, and the user
types a G, PLOT asks the user if he wishes to continue
examining this data file. If the reply is yes, PLOT erases
the screen, then again displays the initial plot and the

whole process starts all over again. If the reply is no,
PLOT asks the user if he wishes to save the processed
(and possibly edited) file. If the reply to this question is
no, the file is discarded. If the reply is yes, the user is ask-
ed what name he wishes the file to be given and where it is
to be stored, and is given a chance to mount a floppy
disk, if necessary. PLOT then copies the pro-
cessed/edited file to the specified location, along with the
header with the system parameter values, but minus any
spurious points that were deleted during the session.

PLOT then asks the user if he wishes to examine
another processed/edited file. If the reply is no, the pro-
gram terminates. If it is yes, PLOT calls the system
subroutine SETCMD, which executes a system monitor
command, stored in an array in PLOT itself, to run the
command file RPLOT.COM (see below) which runs
PLOT again. Thus the user may examine, successively,
any number of processed/edited data files; if desired, a
data file may be repeatedly edited, each time deleting
more spurious points from the data set.

Auxiliary Routine to Inspect Raw Data Files

This routine, called SEERAW, is a modified version
of UNPACK; it is designed to be run by the command
file SEERAW.COM. These routines, and the auxiliary
FORTRAN routine SEEAUX, must all be described
together, because they form a loop which allows the user
to successively inspect any number of raw data files, in
any order.

When SEERAW.COM is executed, it first instructs
the user to mount the disk containing the raw data file to
be inspected and the program disk (which contains the
three main routines and the two auxiliary routines) in the
appropriate drives. It then displays the directory of the
raw data disk, so the user can find the file name of the
data file to be inspected. It next runs the SEERAW
routine, which queries the user for the name of the file to
be inspected. SEERAW then opens the file, reads the 450
data points from it, unpacks them and stores the unpack-
ed data in a temporary file.

Control then passes back to SEERAW.COM, which
calls the screen-oriented system editor to allow the user to
inspect the unpacked file; the user may scroll the file
backward or forward to examine the data. When the user
exits from the editor, control again passes back to
SEERAW.COM, which then deletes the temporary un-
packed file and runs the auxiliary FORTRAN routine
SEEAUX. This routine asks the user if he wants to ex-
amine another raw data file. If the reply is no, the pro-
gram terminates. If it is yes, SEEAUX calis the system
subroutine SETCMD, which executes a monitor com-
mand, stored in an array in SEEAUX, which executes
SEERAW.COM again. Thus, the user may loop through
the examination of any sequence of raw data files, which
may be stored on different disks.

Auxiliary Routine to Create List of Raw Data
Files

This routine, called CRELST (CREate LiST), allows
the user to create a file, on the first raw data disk for a
given flight, which lists the series of raw data files for
that flight, along with the sequence number of the disk
on which each resides. This file, which is just a directory
of the raw files for the given flight, is used by the routine
UNPACK; when the user gives UNPACK a set of data to
be unpacked by specifying the sequence numbers of the
first and last files, UNPACK uses the directory file to
find the raw data files it needs. During execution, the
directory file is copied to a scratch disk (actually a logical
disk on a DEC RLO02 hard disk unit), because the first
raw data disk may be dismounted during the execution of
UNPACK.

CRELST is run by the command file CRELST.COM.
When this command file is run, it first tells the user to
mount the first raw data disk for the given flight on the
appropriate drive. It then runs CRELST, which leads the
user through the process of entering the raw data file
names and the sequence numbers of the disks on which
they reside into the directory file. After the user has typed
in the last file and told CRELST, in reply to its query,
that there are no more files, control passes back to
CRELST.COM, which then displays the disk directory of
the first raw data disk. This directory will now contain
the directory file just created.

Command File to Process and Plot Raw Data

This command file, called RALTIM.COM, directs
the entire process of unpacking raw data, processing it
and plotting it. When RALTIM.COM is executed, it first
displays instructions to the user, directing him to make
sure he has the raw data files to be processed on hand, to
mount the required floppy disks in the appropriate
drives, etc.

RALTIM.COM then displays the disk directory of
the first raw data disk, so that the user has the names of
the raw data files at hand to help in deciding which group
of files is to be processed. (Note that this is the disk direc-
tory placed on the disk by the operating system, not the
directory of raw data files created by CRELST.)
RALTIM.COM then copies the directory of files created
by CRELST (for use by UNPACK) to a scratch disk, in
case the first raw data disk is later dismounted.

RALTIM.COM then successively executes the three
routines— UNPACK, PROCES and PLOT.

Command File to Plot Previously Processed
Data

This command file, called RPLOT.COM, directs the
plotting of a previously processed data file. Upon execu-

tion, RPLOT.COM first directs the user to mount the
program disk in the appropriate drive. It then calls the
system editor to allow the user to place the name of the
data file in the auxiliary command file COPY.COM;
this command file displays instructions to the user to
mount the disk containing that data file in the ap-
propriate drive. After the user has placed the name of the
file in COPY.COM and exited from the editor, control
reverts to RPLOT.COM, which then actually exe-
cutes COPY.COM (which now contains the name of the
data file). COPY.COM, upon being actually exe-
cuted, copies the data file to the RLO2 unit (where it is
assumed to be by PLOT) and gives it a standard name,
which is also assumed by PLOT. RPLOT.COM then
executes PLOT, which operates on the data file.

PROGRAM SIZE AND OPERATING
SPEED

The three main routines (the preprocessing, process-
ing and plotting routines) require about 36.4, 27.2 and
34.9 kilobytes of memory. However, because the three
routines are executed consecutively and only one of them
is in memory at any time, only 36.4 kilobytes of memory
are required to run the program.

The auxiliary routines to inspect raw data files and to
create a list of raw data files require about 35.4 and 10.3
kilobytes of memory. Only one of these routines will be
in memory at any time (with none of the main routines
present), so that the maximum memory required is still
36.4 kilobytes.

The time required to process data and produce a plot
depends, of course, on the size of the data set. The plot
shown in Figure 1 shows a terrain profile over a horizon-
tal range of 140 kilometers, constructed from about
5,000 data points (i.e., laser shots); to preprocess, pro-
cess and plot this data set required about 14 minutes of
computer time.

HOW TO USE THE PROGRAM

The first step in using the program is to place the raw
data files for a given flight on floppy disk(s), in the order
in which the data files were originally taken. The files
may be given any names. The series of files may contain
data sets separated by large time intervals because of
problems encountered during the flight, and may even
contain initial calibration files. These will be obvious
when the data are inspected. Large time gaps will clearly
appear when the plot routine produces its initial plot.
When the user has examined the data, a subset of “good”
data may be identified for later use.

To examine the raw data files without processing
them, the user needs only to execute the command file
SEERAW.COM, which together with the routines it
calls, leads the user through the process of inspecting the

LASER ALTIMETER PROFILE DATA
TRANSECT OF MOUNTAIN RANGES IN VIRGINIA: OCTOBER 7, 1985

3 T T ¥ T] T

T 1 T T T T T

AIRCRAFT:NASA 431 AT
10Km ALTITUDE

HEADING:337° FROM

cl i

5 2 GORDONSVILLE VOR

w -]

g — SKYLINE -

= = DRIVE "]

L = 'y SHENANDOAH _ ** g=

< :GORDONSVILLE i ';",.,-‘.‘.': VALLEY ’f' -
C VOR ; | J 3
[l A X L Nt T]
ety o e, ':\‘ PSR]

U R T N T T R R R A MSL

0 20 40 60 80 100 120 140

HORIZONTAL DISTANCE (Km)

Figure 1. Initial Plot— Profile of Mountain Ranges in Virginia: October 7, 1985

raw data files.

Given a disk or a series of disks containing the series
of raw data files for a given flight, the next step is to use
the routine CRELST to create a directory of files on the
first disk, for later use by the unpacking routine UN-
PACK. CRELST is run by executing its command file,
CRELST.COM which, together with CRELST itself,
leads the user step-by-step through the process of
creating the directory of files.

The raw data are ready to be processed at this point.
The user needs only to execute the command file
RALTIM.COM which, together with the routines it calls,
leads the user through the process of preprocessing (un-
packing), processing and plotting the data.

If the user wishes to plot (and possibly edit) a file of
already processed data, it is only necessary to execute the
command file RPLOT.COM, which together with the
routines it calls leads the user through the process of set-
ting up the existing processed data file and plotting and,
if desired, editing it.

Throughout the execution of the program, especially
in the plot routine, the user will encounter places where

nothing seems to happen; for example, a plot will just re-
main on the screen. To proceed to the next step in such a
case, the user should type G and then hit the RETURN
key. This method of operation was coded into the FOR-
TRAN routines by using the ACCEPT statement, for the
purpose of allowing the user to decide when to proceed.

SOME EXAMPLES OF TERRAIN PLOTS
PRODUCED BY THE PROGRAM

Figure 1 shows the initial plot produced by the pro-
gram (with some labeling that was added later) for a
flight over the mountains of Virginia on October 7, 1985.
The plot shows the entire data set. There are eleven data
records in the data set, each consisting of 450 laser
pulses. The separation between data records is due to a
time interval between records of approximately 11
seconds. Note that the vertical scale is greatly exag-
gerated relative to the horizontal scale, in order to clearly
show the vertical structure.

Figures 2 through 4 illustrate the capability of the plot
routine to show successively smaller subranges of the

data. Figure 2 shows the Skyline Drive region, which was
covered by one data record (450 laser pulses, with a total
duration of 65 seconds). The altitude is relative to mean
sea level (MSL). Figure 3 shows a subrange of Figure 2,
and Figure 4 shows a subrange of Figure 3. Note that in
Figure 4 the laser pulses are clearly separated on the plot.

Figure 5 illustrates the capability of the plot routine to
vary the vertical scale; in this figure the vertical scale was
adjusted to very nearly match the horizontal scale, to
show a realistic view of the terrain profile in the Skyline
Drive region.

1000
900 et

800 A

700 - RO

600

500

400

ALTITUDE (m)

300 4

200 4

-«—FIG. 3
100 |

65 70

T T T T T T T MSL

75 80

HORIZONTAL DISTANCE (Km)

Figure 2. Subrange — Skyline Drive (Plot Shows 1 Data Record of 65 Seconds Duration, Consisting
of 450 Laser Pulses)

ALTITUDE (m)

ALTITUDE (m)

900

800

700

600

500

400

300

200

100

1000

900

800

700

600

500

400

300

200

100

- -
4 --«—— FIG, § —— -
R —————— e e e
67 68 69 70 71 72 73
HORIZONTAL DISTANCE (Km)
Figure 3. Subrange of Skyline Drive
1 |
1 EACH POINT IS [
| ONE LASER PULSE |
e 3
T T T T T T T T T T T T T
70.5 71 72

HORIZONTAL DISTANCE (Km)

Figure 4. Subrange of Skyline Drive

MSL

MSL

ALTITUDE (m)

9000

8000

7000

6000

5000

4000

3000

2000

1000

lll1“1llll[llllUlllllllllllllllllllllll[lllllllll

TYYY vvvvv' uvnvvn]vvvnnu]nvuuv Ilvvvvvvllv]vvn YT vlnl T vvllnvvhtvv]vvlnvl"

65 70 75 80
HORIZONTAL DISTANCE (Km)

Figure 5. Same as Figure 2, but with the Two Axes on Nearly the Same Scale, to Give a Realistic View of the
Terrain Profile.

MSL

PROGRAM LISTINGS

Preprocessing Routine

to Unpack Raw Data

QOO0O0O000000000N000000N0O00000n

(@]

o000 O

1100

aO00n0n

*

*
*
*

PROGRAM UNPACK

kkhkkkhkkhkkhkkkhkkhkkkxk

ALTIMETRY DATA TRANSFER PROGRAM
PART II
UNPACK SLAP DATA DISK FILE INTO NIBBLES
AND DO STATISTICS
PGM: ALTIM. FOR
CREATED: 12/5/85
EDITED: 12/27/85

EDITED: 12/31/85 BY H. SAFREN

LOGICAL*1 ARRAY OF RAW DATA PACKED
IN NIBBLES FROM MAGNETIC TAPE
CONTAINS 450 DATA BLOCKS OF 25 BYTES

VARIABLES: LDATA

BDATA = LOGICAL*1 ARRAY OF ONE DATA BLOCK
UNPACKED FROM NIBBLES INTO BYTES
NB = NUMBER OF DATA BYTES
NS = NUMBER OF DATA BLOCKS
NN = NUMBER OF NIBBLES
BYTE LDATA(7200), BDATA(14400), INPUT(1l5), LRE(3), LTE(3),

OUTPUT (14), QR2, LR(2), LS(2), AS(2), LTIME(10), GO
INTEGER*2 TEM, REM, ATTEN, ITEST(25), SHOT, SMIN, SMAX, RANGE,

RPLOT (45), IRE(3), ITE(3), IAS(2),
MONTH, DAY, HOUR, MINUTE, SECOND, BEGFIL, ENDFIL,

DISKNO, DISKNP

EQUIVALENCE (RANGE,LR(1)), (SHOT,LS(1})

DATA INPUT/15*% 000/, DISKNP/1/

OPEN FILE IN DLO TO HOLD UNPACKED DATA FILE, CREATED BY

UNPACKING AND CONCATENATING A SERIES OF RAW DATA FILES
KkhhkhkkkhhkhkhkkhrxhhAhhhkrrhkhhhh kA khkhkhhkkkkkkkkkkkk ko

OPEN (UNIT=1, NAME='DLO:UFILE.DATA', TYPE='NEW', DISP='KEEP',
FORM='FORMATTED', RECORDSIZE=24, INITIALSIZE=1000)

OPEN FILE WHICH LISTS THE SERIES OF RAW DATA FILES FOR THIS FLIGHT
Kk kRRA KRR KA R IR A AR Rk Ak kAR ARk Ak kkkkkk kA kkhhF kA kkkkkhkhkk kA kA kA kkkk k&

OPEN (UNIT=2, NAME='SCR:FILLST.RAW', TYPE='OLD', DISP='KEEP',
FORM='FORMATTED', RECORDSIZE=16)

10

QOO0

a0

Qaaon0an

Q0

900

901

910

920
921

1000

1005

1006

1010

QUERY USER FOR FILES TO BE PROCESSED;

POSITION FILE LIST TO THE FIRST FILE SPECIFIED
Ihkkkhkkhkkkkkhhkhkrhkkkh kR Rk khkhkhkkkdekkk ok kkk ok ok

TYPE 900
FORMAT (//
t5, 'Type the sequence number of the first file to be processed: ',S$)
ACCEPT 901, BEGFIL
FORMAT (I3)

TYPE 910

FORMAT (//

t5,'Type the sequence number of the last file to be processed: ',§)
ACCEPT 901, ENDFIL

IF (BEGFIL .EQ. 1) GO TO 5
bOo 920 I=1,BEGFIL-1
READ (2,921) 1INPUT, DISKNO

INPUT (15) = -000
CONTINUE
FORMAT (15A1,I1)

READ IN RAW (UNPACKED) DATA FILES FROM DISK(S)
Kk kkh kK kkhhkhAh kA Xk hhkhkkhh kA Ak ARk kkhkk Ak k%

NB=7200
NS=450
NN=32

LOOP THROUGH THE SPECIFIED FILES
Akkkhhkkkhhkkkhkkhkkhkk Ak kkkkkkk*k

DO 1900 IFILE = 1, ENDFIL-BEGFIL+1
Kk ok kk Kk

READ (2,1000) INPUT, DISKNO
INPUT (15) = -000
FORMAT (15A1, Il)

IF (IFILE .EQ. 1) GO TO 1005
GO TO 1010

IF (DISKNO .EQ. 1) GO TO 1020
TYPE 1006, DISKNO
FORMAT (//
T5,'Mount raw file disk number ',t33,I2,t36,';"'/
t5,'then type G, RETURN.'//)
ACCEPT 1012, GO
DISKNP = DISKNO
GO TO 1020

IF (DISKNO .EQ. DISKNP) GO TO 1020

11

Q

o000

1011

1012

1020

10
100

22

20

TYPE 1011

FORMAT (//t5, '"Mount next raw data disk for this flight,'/

t5,'then type G, RETURN: ',S$)
ACCEPT 1012, GO
FORMAT (A1l)
DISKNP = DISKNO

OPEN (UNIT=8, NAME=INPUT, TYPE='OLD', DISP='KEEP',
FORM='FORMATTED', RECORDSIZE=650

DO 10 I=1,NS

LMIN=1+(I-1)*16

LMAX=LMIN+15

READ(8,100) (LDATA(L) ,L=LMIN,LMAX)
CONTINUE

FORMAT (1X,16I4)

CLOSE (UNIT=8, DISP='KEEP')

UNPACK NIBBLES INTO BYTES OF BDATA
Akkkkhdkhkkhhkhkhhrxhkkkkxhkhhkhkkkxk

RANGE=0 ! initialize variables

ATTEN=0
SHOT=0
ZAVG=0.
TAVG=0.
RAVG=0.
SZ=0.
ST=0.
SR=0.
NZ=0
NT=0
NR=0
K=1
SMIN=1
SMAX=450

DO 30 I=1,NS
Akkkkkkkkhhk
ITES=0
IRES=0

DO 20 J=1,16

L=J+(I-1)*16

IF(J.GE.11l) GO TO 22

ITEST (J)=LDATA (L)

IF(ITEST(J).LT.0) LDATA(L)=LDATA(L)+128

CONTINUE

BDATA (K)=LDATA (L) - (LDATA(L) /16) *16
K=K+1

BDATA (K) =LDATA (L) /16

K=K+1

12

25

IF(ITEST(7).LT.0) ITES=80
IF(ITEST(9).LT.0) IRES=80
LR(2)=LDATA(1-4)
LR(1)=LDATA (L-5)

LS (1)=LDATA (L-1)

LS (2)=LDATA (L)

BDATA (K-6)=LDATA (L-2) - (LDATA(L-2) /16) *16
BDATA (K-5)=LDATA (L-2) /16
AS (1) =BDATA (K-6)

AS (2) =BDATA (K-5)

IAS (1)=AS (1)

IAS(2)=AS(2)

LRE (1) =BDATA (K-14)

LRE (2)=BDATA (K-15)

LRE (3)=BDATA (K-16)

LTE (1) =BDATA (K-18)

LTE (2)=BDATA (K-19)

LTE (3) =BDATA (K-20)

Do 25 J=1,3
IRE (J)=LRE (J)
ITE (J)=LTE (J)
CONTINUE

REM=IRE (1) *100+IRE (2) *10+IRE (3)+IRES
TEM=ITE (1) *100+ITE (2) *10+ITE(3)+ITES
ATTEN=IAS (1) *10+IAS(2)
LTIME (1) =BDATA (K-21)
LTIME (2)=BDATA (K-22)
LTIME (3)=BDATA (K-23)
LTIME (4)=BDATA (K-24)
LTIME (5)=BDATA (K-27)
LTIME (6)=BDATA (K-28)
LTIME (7)=BDATA (K-29)
LTIME (8)=BDATA (K-30)
LTIME (9)=BDATA (K-31)
LTIME (10)=BDATA (K-32)
IF (TEM.NE.0) NT=NT+1
IF (REM.NE.0O) NR=NR+1
IF (RANGE.NE.O) NZ=NZ+1
Z=FLOAT (RANGE)

R=FLOAT (REM)

T=FLOAT (TEM)
ZAVG=ZAVG+7Z
TAVG=TAVG+T
RAVG=RAVG+R

S7=SZ+2**2

ST=ST+T**2

SR=SR+R**2

13

400

520

[eNOK®!

521

0

30

nn

1900

QAO0O0O00nN

LMIN
LMAX

1 + (1-1)*32
LMIN + 31

! type first ten records
IF (I .LE. 10) TYPE 400, (BDATA(L),L=LMIN,LMAX)
FORMAT (' '/2X,16 (1X,I3)/2X,16(1X,13))
IF (I .LE. 10) TYPE 520, (LTIME(J),J=1,10),RANGE,REM,TEM,ATTEN,SHOT
FORMAT (2X,5(211,1X),2X,I9,2X,14,2X,I4,2%X,I3,2X,16)

! write current record to
! unpacked file in DLO

MONTH = LTIME(1)*10 + LTIME (2)
DAY = LTIME(3)*10 + LTIME (4)
HOUR = LTIME(5)*10 + LTIME(6)
MINUTE= LTIME (7)*10 + LTIME(8)

SECOND= LTIME(9)*10 + LTIME (10)
WRITE (1,521) MONTH, DAY, HOUR, MINUTE, SECOND, RANGE

FORMAT (5I3,1I9)

IF ((SHOT .LT. SMIN) .AND. (SHOT .GT. SMAX)) GO TO 30

CONTINUE
kdkkkk kk ok

CONTINUE ! end of loop through files

*hkkkkkkk

CLOSE RUN

kkkkhkhkkkkx

CLOSE (UNIT=2, DISP='KEEP')
CLOSE (UNIT=1, DISP='KEEP')

STOP
END

14

Processing Routine

15

PROGRAM PROCESS

This routine processes the unpacked altimeter data.
khkkkkhkhkhkhkhkhkhkkhkkhAkhkhhkhkrhkirhkhkhhkhkhhkhkhkhhkhkhkhkhrhkhkhkhkhrhkhkhhkhkkhkk

[oNONOKe!

BYTE REPLY

Q

INTEGER*2 MONTH (450) , DAY (450),
* HOUR (450) , MINUTE (450), SECOND(450),
* RETTIM(450), GROUPN, HR1l, GOODCT

REAL*4 MSLHT (450), RTSEC(450), HRANGE(450), TIMSEC (450)

DATA REFALT/0./, SPEED/175.0/, C/2.997925E8/, RINDEX/1.0/,
* GROUPN/0/, GOODCT/0/

khkkkhhkhkhkhkkhkhhkhkhhkhkhhkhkhhkhdxhkhhhkhhhhhhhhkhkdhhkhkhhkhkhkhhhkhkhhhkhhkhhkhkhkhkhkhkhkhkhhkhkkhhkhkhkkhkhk

PROCESS UNPACKED DATA FILE; CREATE PROCESSED FILE TO BE PLOTTED
Ak h kR AR A KKKk kR Ak ARk A AR AR AR kA AR kA AR kA Ak kA ARk kh kR kkkk khkk kkkk &

This section of code processes the unpacked data file and stores the
resulting file, which is ready for plotting, in DLO.

Open the unpacked data file in DLO
hkhkkhkhkhkkkhkhkhkhkhkhkkhkhkhkhhkhkhhkhbkkhkhhkhkkikk

o000 NO000n

1 OPEN (UNIT=1, NAME='DLO:UFILE.DAT', TYPE='OLD', DISP='DELETE',
* FORM='FORMATTED', RECORDSIZE=24)

Open a file in DLO to hold the processed file
khkkhkhkhkhkhkkhkkhkhkrbkrhkhkhkhkhkhhhkhkhhkhhkhhhkkhhhhkhkhkhhkhkhhkkk

[oNo NN XS

OPEN (UNIT=2, NAME='DLO:PROFIL.DAT', TYPE='NEW', DISP='KEEP',
* FORM='FORMATTED', RECORDSIZE=26, INITIALSIZE=1000)

Query user for values of parameters
khkhkkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhhkhkkackhkhkhkhkhhkkhkk

[X NeKe]

30 TYPE 31, REFALT

31 FORMAT (//
* t2, 'The current value of the altitude (above mean sea level)'/

t2,'of the starting point is:',t28,f9.2,t39, 'meters;"'/

*

* t2,'do you want to change this? (Y or N): ',8)
ACCEPT 11, REPLY
11 FORMAT (A1)
IF (REPLY .EQ. 'N') GO TO 40
TYPE 32
32 FORMAT (/T2, 'Type the altitude (above mean sea level)'/
* t2,'of the starting point, in meters: ',$)
ACCEPT 33, REFALT
33 FORMAT (£12.4)

16

40 TYPE 41, SPEED

41 FORMAT (//T2,'The current value of the airplane speed is: ',
* t46,£7.2,t54, 'meters per second;'/
* t2,'do you wnat to change this? (Y or N): ', S)
ACCEPT 11, REPLY
IF (REPLY .EQ. 'N'") GO TO 50
TYPE 42
42 FORMAT (/T2, 'Type the new speed (in meters per second): ', S)
ACCEPT 43, SPEED
43 FORMAT (£8. 2)
C
50 TYPE 51, RINDEX
51 FORMAT (//
* t2, 'The value of the average index of refraction of the air'/
* t2,'along the vertical path is taken to be:',t42,f10.6,';"'/
* t2,'do you want to replace this by a more precise value? (Y or N): ',$)
ACCEPT 11, REPLY
VLIGHT = C/RINDEX
IF (REPLY .EQ. 'N") GO TO 1319
TYPE 52
52 FORMAT (/T2, 'Type the new value: ',$)
ACCEPT 53, RINDEX
53 FORMAT (G13.6)
VLIGHT = C/RINDEX ! effective velocity of light in air
C (averaged over vertical path)
C
C
C Write these parameter values to the processed file
C khkhkhkhkhkhkhkhhhkhkhkkhkhkhkhkhkhdkhhbhhhdhhhkhkhbhkrhhhhbhhhkhhkhkdhkhkkk
C
1319 WRITE (2, 1320) REFALT
1320 FORMAT (F12.4)
WRITE (2, 1321) SPEED
1321 FORMAT (F8.2)
WRITE (2, 1322) RINDEX
1322 FORMAT (G13.6)
C
cC
c Read a group of 450 data points from the unpacked file in DLO;
C store them in arrays.
C khkhkkhkhkhkhkkhkkhkhkhkhkkhkhkhkhkhhhkhhhhhrrhkhhhkhhkhkkhkhhhkhrhkhrbA b hkhhhhkhk ki ik
C
100 DO 110 1I=1,450
READ (1,111, END=499) MONTH(I), DAY(I),
* HOUR(I), MINUTE(I), SECOND(I),
* RETTIM(I)
110 CONTINUE
111 FORMAT (513,19)

GROUPN = GROUPN + 1

17

Qoo 0oon

[PEO NP KO XS

PN NS K®! OO0 0n0n

oo NSNS NP KD

Adjust the times for the 450 data points

(the times are given only to the preceding second)
kkkkhkhkhkkhkhkhkkhkhkhkhhkhkhkhkhhkhkkkkhkhkhkhkhkkhhkhkhkhkhkhkhkkhkkhkk

Adjust hour(l) to 0 and take succeeding hours relative to this
HR1 = HOUR(1)
DO 120 1I=1,450
HOUR(I) = HOUR(I) - HOUR(1)
120 CONTINUE

Convert (integer) times in hours, minutes and seconds
to real times in seconds

DO 130 1I=1,450

TIMSEC (I) = FLOAT (HOUR(I)) *3600.
* + FLOAT (MINUTE(I)) *GO.
* + FLOAT (SECOND(I))
130 CONTINUE

Find the first changed time; assume this is exact
and use it as the reference time for this group of 450 points

INDEX = 2
160 IF (SECOND(INDEX) .NE. SECOND(1l)) GO TO 161
INDEX = INDEX + 1
GO TO 160
161 INDREF = INDEX
REFTIM = TIMSEC (INDREF)

Find the last changed time; assume temporarily that it is exact

INDEX = 449

163 IF (SECOND(INDEX) .NE. SECOND{450)) GO TO 164
INDEX = INDEX - 1
GO TO 163

l64 INDLST = INDEX + 1

REFTM2 = TIMSEC (INDLST)

Get more accurate estimates for the first and last times,
using the two reference times and assuming 7 data points per second;
compute the time between data points.

RTSEC (1) = REFTIM - FLOAT (INDREF-1) *(1./7.)
RTSEC (450) = REFTM2 + FLOAT (450-INDLST)*(1./7.)
DELTIM = (RTSEC(450) - RTSEC(1l)) / 449.

18

0NN

Q [pESNONS R NS

o000 0n

QOO0 00

0

NOOOO000

170

180

190

200

250
1351

Use this time interval to compute (real) times for the data points
that are accurate to better than the preceding second

DO 170 1I=1,450

“RTSEC(I) = REFTIM + FLOAT (I-INDREF)*DELTIM

CONTINUE

Add back in hour(l), to get the actual (real) time in seconds;
then subtract hour (l) for the first group of 450 points to get
time in seconds relative to the first data point in the unpacked file

IF (GROUPN .EQ. 1) TINIT = RTSEC(1l) + FLOAT(HRI1) *3600.

DO 180 1I=1,450
RTSEC(I) = RTSEC(I) + FLOAT(HR1l)*3600. - TINIT
CONTINUE

Convert the data point times into distances in kilometers

from the starting point
Akhkhkhkhhkrhkrkhkhkhhhkhkkhkhkhkhhkhkhhhhdhkhkhkhkrhkhkokhahkhhhkhkhhkhhkhhrhhdd

DO 190 1I=1,450
HRANGE (I) = RTSEC(I) * SPEED/1000. ! distance in km
CONTINUE

Convert the return times (in tens of nanoseconds)

to heights of the ground above mean sea level (in meters)
Ahkhhkhkkkhkkhkhkhhkhkkhkhhkhhkhhkhkkhhhkhhkhhhkhkkhkhkhhhkhkhkkkkhkhhkhhhdhhkhd

DO 200 1I=1,450

ALT = 5.E-9 * VLIGHT * FLOAT(RETTIM(I)) ! altitude of airplane above
local ground (in meters)
IF (I .EQ. 1 .AND. ! save altitude at starting
GROUPN .EQ. 1) ALTO = ALT ! point, for reference
RELHT = ALTO - ALT ! ground height above
starting point (meters)
MSLHT (I) = RELHT + REFALT ! ground height above mean

sea level {(meters)
CONTINUE

Write this group of processed data points to the processed file;

do not write "bad" points (return time is zero).
Ak hkhkhkhkhkrhkAXx kA A AA AR AR AR A AR AR A A Ak h Ak kA hkhkdhkhkhhhhhhkhhhhk

DO 250 1I=1,450

IT =1

IF (RETTIM(II) .EQ. 0) GO TO 250
WRITE (2,1351) HRANGE(II), MSLHT(II)
GOODCT = GOODCT + 1

CONTINUE

FORMAT (F14.5, F12.2)

19

C Display the time between data points for this group,
C the inter-group time gap from the last group and
C the current total number of good points (i.e., the
C current number of points in the processed file)
C IR AR SRR SRS EE S S ERRERR SRS SRS RS RE RS SRR LR R EESELTESSEEEEE)
C
IF (GROUPN .EQ. 1) ENDTPR = 0.
GAP = RTSEC(1l) - ENDTPR
ENDTPR = RTSEC(450)
C
TYPE 260, DELTIM, GAP, GOODCT
260 FORMAT (////
* t5,'Time between data points for this group = ',t48,f7.4,
* t56, 'seconds; '/
* t5,'Gap from last group = ',t28,f8.4,t37,"'seconds;"'//
* t5, 'Current number of points in processed file = ',t47,16)
C
C
C Read next group of 450 points from the unpacked data file
C khkkhkkhkkhkkhkhkkhkhkhkhkhkhkkhkhkrdrhhkhkrhkhhhkhhkkhkhkhkrdhkkdhhhkhhkhkrthhkhhkhkhhkhkhkhkhkhkisk
GO TO 100
C
C**
cC
C CLOSE RUN
C k ok k ok kkkkk
C
499 CLOSE (UNIT=1, DISP='DELETE')
CLOSE (UNIT=2, DISP='KEEP')
STOP
END

20

Plot Routine

21

PROGRAM PLOT

C

C This routine plots the processed altimeter data.
C***

C

BYTE REPLY, LINEAR(10), STDSCR(10),
* LINE, BRIGHT, DOTTED(2), GO, USER, DARK,
* YES, NO, STRING(14), LFTORD(2), LONG, MEDIUM,
* BOTTOM(2), NORLIN(2), BEGNUM(1l0), ENDNUM(10),
* HSCALE, STDRD, RGTORD(2), PROFIL(15), SHORT,
* LFTNUM(5), COMAND(14)
C
INTEGER*2 IPARAM(10), GOODCT, REPLOT(3)
C
REAL*4 RPARAM(10), USRWIN (4), SCRWIN(4)
C
COMMON/COORDS/ UX,UYy, TX,TY, SX,SY
C
DATA LINEAR/'L','I','N',7*' '/,
* STDSCR/'S',9*' '/, LINE/'L'/, BRIGHT/'B'/,
* DOTTED/'D','T'/, USER/'U'/, DARK/'D'/,
* YES/'Y'/, NO/'N'/,
* STRING/'S','e','a','r','c’,'h','i','n','g',' |'
* Ifl,lil,lllllel/,
* LFTORD/'O','L'/, LONG/'L'/, MEDIUM/'M'/,
* BoTTOM/'A','B'/, NORLIN/'N','R'/,
* BEGNUM/12*' '/, ENDNUM/12*' '/, STDRD/'S'/,
* RGTORD/'O','R'/, PROFIL/15%*-000/, SHORT/'S'/,
* LFTNUM/5*' '/,
* COMAND/I@I’lcl,lol,lMl’l:l,lRl’lPIIILl’lol’lTl,l",
* 'C’,'O','M‘/
c**
C
C COPY THE PROCESSED FILE INTO VM
C (in unformatted form)
C khkkhkhkkkhkhkkhkkhkhkhkhhkhkhkhhkdkhkhkhkhkhhkhik
C
C
C Open the file to be plotted
C ___________________________
OPEN (UNIT=1, NAME='DLO:PROFIL.DAT', TYPE='OLD', DISP='DELETE',
* FORM='FORMATTED', RECORDSIZE=26)
C
C
C Read the first three records; these contain the parameter values
C used when the file was created
C __
READ (1, 2120) REFALT
2120 FORMAT (F12.4)
READ (1, 2121) SPEED
2121 FORMAT (F8.2)
READ (1, 2122) RINDEX
2122 FORMAT (G13.6)

22

ONONY!

oHONONPN®P!

oNoNONON®!

QOO0 n

2125

2130

2140
2150

2200

500

* % X ¥ X

Display these parameter values

TYPE 2125, REFALT, SPEED, RINDEX

FORMAT (///
t5,'Values of parameters used when this file was created:'//
t10,'Height of starting point above mean sea level (m) = ',
t63,f12.4//
t10, 'Speed of airplane (m/sec) = ',t39,f8.2//
t10, 'Effective index of refraction = ',t43,g913.6///)

Open file in VM (to hold unformatted version of the file)

OPEN (UNIT=2, NAME='VM:PLTFIL.DAT', TYPE='NEW', DISP='DELETE',
FORM="'UNFORMATTED', ACCESS='DIRECT', MAXREC=20480,
RECORDSIZE=2, INITIALSIZE=320)

Copy file to VM

TYPE 2130

FORMAT (////T20,'Copying processed file in DLO to VM ...'/
t20,' (direct access, unformatted)'//)

IVM = 1

READ (1, 2150, END=2200) RANGE, SLHT
FORMAT (F14.5, F12.2)

WRITE (2'IVM) RANGE, SLHT

IVM = IVM + 1
GO TO 2140

GOODCT = IVM - 1
CLOSE (UNIT=1, DISP='DELETE')

PLOT PROCESSED DATA
kkkhkkhkkhkhkkkkhkk

Set up plotting system
khhkhkhkkhhkhkhkkkhkhkhhkhkkhkhkhkik

BEGRNG = 0.
ENDRNG = 10000.
HSCALE = STDRD

CALL BEGPLT

23

Q

OO0

QaOan QO0ON 0

550

560

561

567

570

Search processed data file to find maximum height and range
Akhkkkhkhkhkhkkhhhhkhkhkhkhkhkdhhkhkhkhkhkhkhhhkhhhhhhkhkhkhhhdkkdhkhhhkhhkhkrhhkhk
HTMAX = -1000.

HTMIN = 100000.

DO 550 I=1,GOODCT

IT =1

READ (2'II) RANGE, HEIGHT

RNGMAX = RANGE

IF (HEIGHT .EQ. ~-1.E10) GO TO 550

IF (RANGE .LT. BEGRNG) GO TO 550

IF (RANGE .GT. ENDRNG) GO TO 550

IF (HEIGHT .LT. HTMIN) HTMIN = HEIGHT
IF (HEIGHT .GT. HTMAX) HTMAX = HEIGHT
CONTINUE

IF (ENDRNG .EQ. 10000.) ENDRNG = RNGMAX

Set up the mapping from user space to the screen
khkhkhkhkkhkhkhhkhkhkhkkhkhkhkhhhkhkhhkhhkhkhhkhhkhhhhkhhkhhrdhkhkhkhkk

USRWIN (1) = BEGRNG ! user window
USRWIN (2) = ENDRNG

SBOTTM = AMIN1 (HTMIN-100., 0.)

STOP = AMAX]1 (HTMAX+1000., 0.)

IF (HSCALE .EQ. 'S') GO TO 561
IF (HSCALE .EQ. 'D') GO TO 567
IF (HSCALE .EQ. 'K') GO TO 567

USRWIN(3) = SBOTTM
USRWIN(4) = STOP
CBOTTM = SBOTTM
CTOP = STOP
GO TO 570

USRWIN (3) = CBOTTM
USRWIN (4) = CTOP

CALL SETMAP (LINEAR, STDSCR, IPARAM, RPARAM, USRWIN, SCRWIN)

Draw a box around the screen window
kkhkkkhkkkhkkhkhhkhkhkkhkhkhkhhkhkhkhkhkhkikrhhkhkhkhkhkhhhkkhkk

CALL BOXWIN

Draw a horizontal dotted line to show mean sea level
AAKEEEEETAAAARAAAARA AR AX A AR AR AR AR AT AR A A A kAR AA Ak xkhkhhk ki

CALL DRWLIN (0.,0., ENDRNG,0., LINE, BRIGHT, DOTTED, IPARAM)

24

PN Ke!

a0 an

600

610

611

611

620
621

630
631

Plot the entire set of processed points
khkhkhkhkhkhkkhkhkhkkkhkhhkrthhkrdhkhhkhhkhkhkxdhkhkhhhkhkdik

DO 600 I=1,GOODCT

IT =1

READ (2'II) RANGE, HEIGHT

IF (HEIGHT .EQ. -1.E10) GO TO 600

IF (RANGE .LT. BEGRNG) GO TO 600
IF (RANGE .GT. ENDRNG) GO TO 600
CALL PLOTPT (RANGE, HEIGHT, BRIGHT)
CONTINUE

Draw tick marks every 100 meters on the vertical axis;
display height every 100 meters, if top < 1,000 meters

khhkhkkhkhhhhkhhkhkhkhkhkhhkhkhkhhkhkhkhkhkhhkhhkhkhkhkhhkhkhhhkhkhkhkhkhkhhkhkhkhkhkhhkk

CALL TICK (LFPTORD, LONG, 0., BRIGHT) ! long tick at sea level
CALL TICK (RGTORD, LONG, 0., BRIGHT)

TCKHT = 0. ! short ticks above sea
TCKHT = TCKHT + 100. ! level, every 100 meters
IF (TCKHT .GT. USRWIN(4)) GO TO 620

CALL TICK (LFTORD, SHORT, TCKHT, BRIGHT)
CALL TICK (RGTORD, SHORT, TCKHT, BRIGHT)

IF (USRWIN(4) .GT. 1000.) GO TO 610 ! display height every 100
ENCODE (8, 611, LFTNUM) TCKHT ! meters
FORMAT (F8. 1)
Ux = 0.
UY = TCKHT

CALL MAP (USER)

ITCKHT = SY

ENCODE (5, 611, LFTNUM) IFIX(TCKHT)

FORMAT (I5)

CALL DISPSQ (LFTNUM, 5, BRIGHT, 1, 0, ITCKHT, 0., 15)
GO TO 610

TCKHT = 0. ! medium ticks every 1000
TCKHT = TCKHT + 1000. ! meters; display heights
IF (TCKHT .GT. USRWIN(4)) GO TO 630

CALL TICK (LFTORD, MEDIUM, TCKHT, BRIGHT)
CALL TICK (RGTORD, MEDIUM, TCKHT, BRIGHT)
ENCODE (8, 611, LFTNUM) TCKHT
UxXx = 0.
UY = TCKHT
CALL MAP (USER)
ITCKHT = SY
ENCODE (5, 611, LFTNUM) IFIX(TCKHT)
CALL DISPSQ (LFTNUM, 5, BRIGHT, 1, 0, ITCKHT, 0., 15)
GO TO 621

TCKHT = 0. ! short ticks below sea
TCKHT = TCKHT - 100. ! level, every 100 meters
IF (TCKHT .LT. USRWIN(3)) GO TO 635

CALL TICK (LFTORD, SHORT, TCKHT, BRIGHT)
CALL TICK (RGTORD, SHORT, TCKHT, BRIGHT)
GO TO 631

25

(@] CHONC NSNS KR!

aQ0Onn

NSO EPNOES!

(@

635
636

640

641

651

652

660

661

TCKHT 0. !
TCKHT = TCKHT - 1000. !
IF (TCKHT .LT. USRWIN(3)) GO TO 640

CALL TICK (LFTORD, MEDIUM, TCKHT, BRIGHT)
CALL TICK (RGTORD, MEDIUM, TCKHT, BRIGHT)

GO TO 636

Find appropriate range unit

(at least two units in range span)
khkhkhkhkhkhkkkkkhkkhkhkhkhkhkhkhhkhkhkhkhkhhkrkhkhkdx

ENDRNG - BEGRNG
100000.

RSPAN
TESTU

TESTU = TESTU/10.
IF (TESTU .GT. 0.5*RSPAN)
RUNIT = TESTU

GO TO 641

Draw range ticks every unit
hkhkkkkhkhhhkhkhkkhkhhkhkhkhkhkhkkhkhkhkhkhhkhkkk

QuUOT = BEGRNG/RUNIT

TRQUOT = FLOAT (IFIX(QUOT))
REM = QUOT - TRQUOT

BEGTCK = TRQUOT*RUNIT + RUNIT

IF (REM .EQ. 0.) BEGTCK = TRQUOT*RUNIT
TCKP = BEGTCK - RUNIT

TCKP = TCKP + RUNIT

IF (TCKP .GT. USRWIN(2)) GO TO 652
CALL TICK (BOTTOM, MEDIUM, TCKP, BRIGHT)

QUOT = TCKP/ (10.*RUNIT)
TRQUOT = FLOAT (IFIX{(QUOT))
DIFF = QUOT - TRQUOT

IF (DIFF .LT. 0.01 .OR. DIFF .GT. 0.99)
CALL TICK (BOTTOM, LONG, TCKP, BRIGHT)

GO TO 651

ENDTCK = TCKP - RUNIT

medium ticks below sea
level, every 1,000 meters

Draw ticks every 1/10th range unit, if there are

no more than ten units

kkkhhkhkhhkhkhkhkhkhkkkrkkkkkhkhkhkkhhkkhkkhhhkhhkhdkhkhhhhhhkhkk

IF (IFIX (RSPAN/RUNIT) .GT. 10) GO TO 670
TCKP = BEGTKP - RUNIT

TENTH = RUNIT/10.

TCKP = TCKP + TENTH

IF (TCKP .LT. USRWIN(1l)) GO TO 661

IF (TCKP .GT. USRWIN(2)) GO TO 670

CALL TICK (BOTTOM, SHORT, TCKP, BRIGHT)
GO TO 661

26

ann

OO0 00n

Display range values at beginning and end (long) ticks
khkhkkhkkhkkhkhkhkkhkhkhkkhkkhkkhkhhkhkkhhhkhkhkhhkhkhhkkhkkkhkkhkhkhhhkkhkhkhkhkkhkhkkkhkhkkik

670 ENCODE (10, 671, BEGNUM)} BEGTCK
ENCODE (10, 671, ENDNUM) ENDTCK
671 FORMAT (F10. 3)

UX = BEGTCK

Uy = 0.

CALL MAP (USER)
IBEGTK = SX

UX = ENDTCK

Uy = 0.

CALL MAP (USER)
IENDTK = SX

CALL DISPSQ (BEGNUM,10,BRIGHT,1,IBEGTK-75,0,0.,15)
CALL DISPSQ (ENDNUM,10,BRIGHT,1l,IENDTK-75,0,0.,15)

ACCEPT 680, GO ! Hold plot on screen
680 FORMAT (Al) ! until user's cue

REMOVE SPURIOUS POINTS FROM PROCESSED

DATA FILE, INTERACTIVELY, BY INSPECTION
Kk khkkhkRkkk kR kkkkh kR khkhkkkkkkkkhkhkkk k&

Query user about removing spurious points
khkkkkhkhkhkkhkhkkhkhkkhkhkhkkkhkhkkhkkhkhkhkhkhkrdkhkhkhkhkhkhkthhkhhkhkii

CALL ECHO (YES)
CALL TYP100

TYPE 700
700 FORMAT(////T10,'Do you want to interactively remove any'/
* tl0, 'spurious points from this plot {(and from'/
* t10,'the processed data file)? (Y or N): ',S)
ACCEPT 701, REPLY
701 FORMAT (Al)

CALL ECHO (NO)
CALL CLR100

IF (REPLY .EQ. 'Y') GO TO 705
IF (REPLY .EQ. 'N') GO TO 706
705 REPLOT (1) = 1
GO TO 800
706 REPLOT (1) = 0

GO TO 900

27

[oNeKS!

800

801

802

810

830

* % % ¥ % ¥ % F * F*

Remove spurious points by using the crosshair
AhkhkhkhkhkhkhkhkkhAAk kT Ak A A AA R A ARk AR Ak Ak hkh kA hhkkhdhhk

CALL ECHO (YES)

CALL TYP100

TYPE 801

FORMAT (///t5,'Use the crosshair to remove unwanted points:'//
t10,'o Move the crosshair around the screen by using the'/

t10,° four arrow keys;'//
t10,'c To remove a point, position the crosshair NEAR the'/
t10," point (not exactly on it) and type period, RETURN; '//
t1l0,'oc To recall the crosshair to remove another point, '/
tlio,’ type N (no RETURN);'//
t10,'o After removing the last undesired point,'/
t10,"' type G (no RETURN).'///
t5," To remove this message and call up the crosshair,'/
t10,"' type G, RETURN.')

ACCEPT 802, GO

FORMAT (Al)

CALL ECHO (NO)
CALL CLR100

IXINIT = 500
IYINIT = 650
CALI, MOVXHR (IXINIT,IYINIT, IXPOS,IYPOS) ! crosshair mode

CALL DISPST (STRING, 14, BRIGHT, 1, 10,750)

MINDST = 10000

DO 830 I=1,GOODCT
kkkkhkkhkhhkhkhrkhkhhkkkh*k

IT = I

READ (2'II) RANGE, SLHT

IF (SLHT .EQ. -1.E10) GO TO 830
IF (RANGE .LT. BEGRNG) GO TO 830
IF (RANGE .GT. ENDRNG) GO TO 830

UX = RANGE

Uy = SLHT

CALL MAP (USER)
IHRNGE = 5X
IMSLHT = SY

IDIST = IABS(IHRNGE-IXPOS) + IABS(IMSLHT-IYPOS)
IF (IDIST .GE. MINDST) GO TO 830

MINDST IDIST

IMIN IT

HRNGMN RANGE

SLHMN SLHT

CONTINUE
Khkkkkhkkk

WRITE (2'IMIN) HRNGMN, ~-1.E10 ! set height of bad point
! to large negative value

CALL PLOTPT (HRNGMN,SLHMN, DARK) ! erase bad point from screen
CALL DISPST (STRING, 14, DARK, 1, 10,750)

28

aaooao0aononn

840

850

860

900

901

902

910
911

903

905
906

907
908

ICHAR = ITTINRY()

IF (ICHAR .EQ. 78) GO TO 850 ! get next bad point

GO TO 860

IXINIT = IXPOS

IYINIT = IYPOS

GO TO 810

IF (ICHAR .EQ. 71) GO TO 900 ! go to next section of code
GO TO 840

EXPAND HORIZONTAL SCALE - CHOOSE A

RANGE INTERVAL AND PLOT IT
kkkhkkhkhkhkhkhhh Ak hhkhkkhkdkhkhhk kkk

Query user about plotting a subrange

CALL ECHO (YES)
CALL TYP10O

TYPE 901
FORMAT (///
t10,'Do you want to plot a subrange of the data? (Y or N): ',$%)
ACCEPT 902, REPLY
FORMAT (A1)
IF (REPLY .EQ. 'N') GO TO 910
IF (REPLY .EQ. 'Y') GO TO 911
REPLOT (2) = 0
GO TO 903
REPLOT(2) = 1
GO TO 905

CALL ECHO (NO)
CALL CLR100
GO TO 1000

TYPE 906

FORMAT (//
t1o0, 'Do you want to specify the subrange by Typlng the endpoints'/
t10,'or by using the Crosshair? (type T or C): ',$)

ACCEPT 908, REPLY

FORMAT (A1)

CALL ECHO (NO)

CALL CLR100

IF (REPLY .EQ. 'T') GO TO 920
IF (REPLY .EQ. 'C') GO TO 930
GO TO 907

29

Q00

[P NSNS NSNS

920

921

922

923

930

931

932

940

* % O X * X F ¥ *

Specify subrange by typing endpoints

CALL ECHO (YES)
CALL TYP100
TYPE 921
FORMAT (///
t10, 'Type left endpoint of subrange (real, in km): ',§)
ACCEPT 922, BEGRNG
FORMAT (G16.4)
TYPE 923
FORMAT(///
t10, 'Type right endpoint of subrange (real, in km): ',$)
ACCEPT 922, ENDRNG
CALL ECHO (NO)
CALL CLR10O
GO TO 1000

Specify subrange by using crosshair

CALL ECHO (YES)
CALL TYP100

TYPE 931

FORMAT (///
t5, 'Use the crosshair to point to the endpoints of the subrange:'//
t1l0,'o Move the crosshair around the screen by using the'/
tl0," four arrow keys;'//
t10,'o Point to the left endpoint first,'/

t10," then to the right endpoint;'//

tl0,'o After positioning the crosshair at each endpoint,'/
t10,"' type a period followed by RETURN.'//
t5, 'To remove this message and call up the crosshair,'/
t5, 'type G, RETURN.')

ACCEPT 932, GO
FORMAT (Al)
CALL ECHO (NO)
CALL CLR190

CALL MOVXHR (500,0, IXPOS,IYPOS) ! crosshair mode
BEGRNG = BEGRNG + ((ENDRNG-BEGRNG) * (FLOAT (IXP0OS)-100.))/823.
CALL VECTOR (FLOAT(IXPOS),36., FLOAT(IXPOS),76.,

BRIGHT, NORLIN, IPARAM)

CALL VECTOR (FLOAT (IXPOS-1),36., FLOAT (IXPOS-1),76.,

BRIGHT, NORLIN, IPARAM)

CALL MOVXHR (IXPOS,IYPOS, IXPOS,IYPOS)
ENDRNG = BEGRNG + ((ENDRNG-BEGRNG) * (FLOAT (IXP0OS)-100.))/823.
CALL VECTOR (FLOAT (IXPOS),36., FLOAT (IXPOS),76.,

BRIGHT, NORLIN, IPARAM)

CALL VECTOR (FLOAT (IXPOS+1),36., FLOAT (IXPOS+1),76.,

BRIGHT, NORLIN, IPARAM)

ACCEPT 940, GO
FORMAT (A1)

30

anNan

1000

1001

1002

1005

1010

1011

1012

1020
1021

1022

1025

1050

¥ O% % % % X F % F FH *

CHOOSE VERTICAL SCALE
Zkkhkhhkkhkhkkkkhkhkhhxkh*

CALL ECHO (YES)
CALL TYP100

TYPE 1001
FORMAT (///
t5,'Do you wnat to re-define the vertical scale? (Y or N): ',$)
ACCEPT 1002, REPLY
FORMAT (Al)

IF (REPLY .EQ. 'Y') GO TO 1010
IF (REPLY .EQ. 'N') GO TO 1005

REPLOT(3) = 0
CALL ECHO (NO)
CALL CLR100

GO TO 1100

REPLOT(3) = 1

TYPE 1011, CBOTTM, CTOP

FORMAT (///

t5,'Before replotting the data, you may choose the vertical scale:'//
t10,'S. The standard vertical scale extends from 100 meters below'/
t10,"' the lowest data point or zero (sea level), whichever is'/
t10,"' less, to 1,000 meters above the highest data point;'/

tlo,’ this option MUST be chosen if you want to display all'/
tlo," the outlying points in order to remove them;'//

t10,'D. You may define a new vertical scale;'//

t10, 'K. You may keep the current vertical scale, which is:'/

t20,£9.2,t30, 'meters',t37,'to',t40,£9.2,t50, 'meters (relative'/
t20,'to mean sea level);'//

t5,'Type S, D or K: ', S$)
ACCEPT 1012, HSCALE
FORMAT (A1)
IF (HSCALE .EQ. 'S") GO TO 1050
IF (HSCALE .EQ. 'D") GO TO 1020
IF (HSCALE .EQ. 'K') GO TO 1050
TYPE 1021
FORMAT (//
t5,'Type the bottom height'/
t5,'(in meters, real, relative to mean sea level): ',S)

ACCEPT 1022, CBOTTM
FORMAT (F9.2)

TYPE 1025
FORMAT (//
t5,'Type the top height'/
t5,'(in meters, real, relative to mean sea level): ',S)

ACCEPT 1022, CTOP
CALL ECHO (NO)

CALL CLR100
GO TO 1100

31

[PNOKS!

1100

1110
1111

OO0 N

1200

1201

1202

1205

OO0 0a

1300
1301

1302

1305
1306

1307

1308

1309

* * * *

DECIDE WHETHER TO REPLOT

kkhkhkkhkhkhkkhkhkkhkhhkhkhkhkhkhkhkk

IF (REPLOT (1) +REPLOT (2)+REPLOT(3) .EQ. 0) GO TO 1110
GO TO 500 ! replot

ACCEPT 1111, GO ! hold plot on screen
FORMAT (A1) ! until user's cue

KEEP EXAMINING THIS DATA FILE?
hkkkhkhkkhhkhhhkkhkhkhhhhhkhkkkok

CALL ECHO (YES)
CALL TYP100

TYPE 1201

FORMAT (///T5,'Do you want to keep examining this data file?'/
t5,'(Y or N): ',S$)

ACCEPT 1202, REPLY

FORMAT (Al)

IF (REPLY .EQ. 'Y'") GO TO 1205

IF (REPLY .EQ. 'N") GO TO 1300

CALL ECHO (NO)
CALL CLR100
BEGRNG 0.
ENDRNG 10000.
HSCALE STDRD
GO TO 500

SAVE PROCESSED FILE?
kkkkhdhhkhhkkhkhkkhkkkk

TYPE 1301

FORMAT (///t5,'Do you want to save the processed file? (Y or N): ',$)
ACCEPT 1302, REPLY

FORMAT (Al)

IF (REPLY .EQ. 'Y") GO TO 1305

IF (REPLY .EQ. 'N") GO TO 1400

TYPE 1306

FORMAT (/t5,'Type the name you want the processed file to have;'/
t5,'it should be in DLO to make sure that there is'/
t5, 'enough room, because the file is formatted and'/
t5,'may be large; but be careful NOT to name it'/
t5,'DLO:PROFIL.DAT) : ',S)

ACCEPT 1307, PROFIL

FORMAT (15A1)

TYPE 1308

FORMAT (//t5,'If necessary, mount the disk which is to contain'/
t5,'the file, then type G, RETURN: ',S)

ACCEPT 1309, GO

FORMAT (A1)

32

1310

1320
1321

1322

1350
1351

Q

PN RO NON®!

1400

QOO0 n

1500

1501

OPEN (UNIT=1, NAME=PROFIL, TYPE='NEW',
FORM='FORMATTED', RECORDSIZE=26,

TYPE 1310
FORMAT (//t20, 'Creating processed file

WRITE (1, 1320) REFALT
FORMAT (F12.4)
WRITE (1, 1321) SPEED
FORMAT (F8. 2)
WRITE (1, 1322) RINDEX
FORMAT (G13.6)

DO 1350 1I=1,GOODCT

IT =1

READ (2'II) RANGE, SLHT

IF (SLHT .EQ. -1.E10) GO TO 1350
WRITE (1,1351) RANGE, SLHT
CONTINUE

FORMAT (F14.5,F12.2)

CLOSE (UNIT=1, DISP='KEEP')

CLOSE RUN
khkkkkkkkk

CALL ENDPLT
CLOSE (UNITs2, DISP='DELETE')

DISP='KEEP',
INITIALSIZE=1000)

o '//)

PLOT ANOTHER PREVIOUSLY PROCESSED/EDITED DATA FILE?
Akkhdkhhkhhhhhhhhhhkhkhkh Ak hhkkkkhkhhhkhkkkhkhkkkkk

TYPE 1500
FORMAT(///

t5,'Do you want to plot another previously processed/edited'/ |

t5,'data file? (Y or N): ',$)
ACCEPT 1501, REPLY
FORMAT (A1)
IF (REPLY .EQ. 'Y') CALL SETCMD (COMAND)
STOP
END

33

Auxiliary Routines

34

PROGRAM SEERAW

C khkkhkkhhkkhkhkkkkkk
C
C This routine is a modification of UNPACK; it allows the user to inspect
C the raw data files.
c***
C
BYTE LDATA(7200), BDATA(14400), INPUT(15), LRE(3), LTE(3),
* QR2, LR(2), LS(2), AS(2), LTIME(10), GO
C
INTEGER*2 TEM, REM, ATTEN, ITEST(25), SHOT, SMIN, SMAX, RANGE,
* RPLOT (450), IRE(3), ITE(3), IAS(2),
* MONTH, DAY, HOUR, MINUTE, SECOND
C
EQUIVALENCE (RANGE,LR(1l)), (SHOT, LS(1))
C
DATA INPUT/15%°-000/
C
C
C OPEN FILE IN DLO TO HOLD UNPACKED DATA FILE TO BE INSPECTED
C IR ERE SR EEEEEEE SR SRS R R RS EE R ER RS ER SRR R R SRR R R R RERE R R R RS EE RN
1100 OPEN (UNIT=2, NAME='DLO:INSPCT.DAT', TYPE='NEW-, DISP='KEEP',
* FORM='FORMATTED', RECORDSIZE=24, INITIALSIZE=1000)
C
C
C QUERY USER FOR NAME OF RAW DATA FILE TO BE INSPECTED
c I E RS RS EEEEEE LRSS R RS EE TR SRR EEEESEEE XS EEEEREEEERRESESE]
TYPE 900
900 FORMAT (//
* t5,'Raw data file to be inspected: ', 8)

ACCEPT 901, INPUT
901 FORMAT (15A1)

OPEN RAW DATA FILE

LR E R R AR E SR SR ESEEES]

OPEN (UNIT=1, NAME=INPUT, TYPE='OLD', DISP='KEEP',
* FORM="'FORMATTED', RECORDSIZE=65)

ann

READ DATA FROM FILE
Khkkkhkhkhkhkhhkkhkkkxxx

[oNoNPXe!

5 NB=7200
NS=450
NN=32

DO 10 I=1,NS

LMIN=1+(I-1) *16

LMAX=LMIN+15

READ(1,100) (LDATA(L),L=LMIN,LMAX)
10 CONT INUE
100 FORMAT (1X,1614)

CLOSE (UNIT=1, DISP='KEEP')

35

22

20

25

UNPACK NIBBLES INTO BYTES OF BDATA
Kkhkhhkhkhkhkhhhhhhkkkhhhk kA Ak kkkkk
RANGE=0

ATTEN=0

SHOT=0

ZAVG=0.

TAVG=0.

RAVG=0.

SZ2=0.

ST=0.

SR=0.

NZ=0

NT=0

NR=0

K=1

SMIN=1

SMAX=450

DO 30 I=1,NS
hkhkkhkkkkkkkkk
ITES=0
IRES=0

DO 20 J=1,16
L=J+(I-1) *16
IF(J.GE.1l1]) GO TO 22
ITEST (J)=LDATA (L)

IF(ITEST(J).LT.0) LDATA(L)=LDATA(L)+128

CONTINUE

BDATA (K) =LDATA (L) - (LDATA (L) /16) *16
K=K+1

BDATA (K) =LDATA (L) /16

K=K+1

IF(ITEST(7).LT.0) ITES=80
IF(ITEST(9).LT.0) IRES=80
LR(2)=LDATA(L-4)
LR(1)=LDATA(L-5)
LS(1)=LDATA (L-1)

LS (2)=LDATA (L)

initialize variables

BDATA (K-6) =LDATA (L-2) - (LDATA (L-2) /16) *16

BDATA (K-5)=LDATA (L-2) /16
AS (1) =BDATA (K-6)
AS (2)=BDATA (K-5)
IAS (1)=AS (1)

IAS (2)=AS(2)

LRE (1) =BDATA (K-14)
LRE (2) =BDATA (K-15)
LRE (3) =BDATA (K-16)
LTE (1) =BDATA (K~-18)
LTE (2) =BDATA (K-19)
LTE (3) =BDATA (K-20)

DO 25 J=1,3
IRE (J)=LRE (J)
ITE (J)=LTE (J)
CONTINUE

36

QOO0 0

(@]

521

30

REM=IRE (1) *100+IRE(2)*10+IRE(3)+IRES
TEM=ITE (1) *100+ITE (2) *10+ITE (3)+ITES
ATTEN=IAS (1) *10+IAS(2)
LTIME (1) =BDATA (K-21)
LTIME (2)=BDATA (K-22)
LTIME (3)=BDATA (K-23)
LTIME (4)=BDATA (K-24)
LTIME (5)=BDATA (K-27)
LTIME (6)=BDATA (K-28)
LTIME (7)=BDATA (K-29)
LTIME (8)=BDATA (K-30)
LTIME (9)=BDATA (K-31)
LTIME (10)=BDATA (K-32)
IF(TEM.NE.O) NT=NT+1l
IF (REM.NE.0O) NR=NR+1
IF (RANGE.NE.0) NZ=NZ+1
Z=FLOAT (RANGE)

R=FLOAT (REM)

T=FLOAT (TEM)
ZAVG=ZAVG+7Z
TAVG=TAVG+T
RAVG=RAVG+R

SZ=8Z2+2**%2

ST=8T+T**2

SR=SR+R**2

ILMIN = 1 + (I-1)*32

LMAX = LMIN + 31

MONTH = LTIME (1) *10 + LTIME(2)
DAY = LTIME(3)*10 + LTIME (4)
HOUR = LTIME(5)*10 + LTIME(6)
MINUTE= LTIME(7)*10 + LTIME(8)
SECOND= LTIME(9)*10 + LTIME(10)

WRITE (2,521)
FORMAT (5I3,I9)

IF ((SHOT .LT. SMIN) .AND.
CONTINUE

kkkkkkhkkx

CLOSE RUN
kkdkokkkkkk

CLOSE (UNIT=2, DISP='KEEP')

STOP
END

37

MONTH, DAY, HOUR, MINUTE,

(SHOT .GT. SMAX))

SECOND, RANGE

GO TO 30

PROGRAM CRELST
kkkhkkhkkkkkkkk*

C
C
C This routine allows the user to create a file, DYO:FILLST.RAW,
C to be located on the first raw data disk, which lists the series
C of raw data files for the flight, along with the disk on which
C each file resides.
C
C During execution of the processing/plotting routines, this file
C is copied to SCR: and read from there, because the first raw data
C disk may be dismounted during execution.
C**
C

BYTE FILNAM(15), REPLY
C

INTEGER*2 DISKNO

C**

C
OPEN (UNIT=1, NAME='DYO:FILLST.RAW', TYPE='NEW', DISP='KEEP',

* FORM='FORMATTED', RECORDSIZE=16, INITIALSIZE=5)
C
TYPE 10
10 FORMAT (//t5, 'Type the name of the first raw data file:'/
* £5, ' (DY0 : XXXXXX.XXX, less than 14 characters o.k.) ',$)
ACCEPT 11, FILNAM
11 FORMAT (15A1)
DISKNO = 1
WRITE (1,12) FILNAM, DISKNO
12 FORMAT (15A1,1I1)
C
19 TYPE 20
20 FORMAT (//t5, '"Another raw data file? (Y or N): ',S)
ACCEPT 21, REPLY
21 FORMAT (A1)
IF (REPLY .EQ. 'Y"') GO TO 29
IF (REPLY .EQ. 'N') GO TO 50
C
29 TYPE 30
30 FORMAT (//t5,'Type the name of the next raw data file:'/
* t5, "' (DY0: XXXXXX.XXX, less than 14 characters o.k.) ',$)
ACCEPT 11, FILNAM
TYPE 31
31 FORMAT (t5, 'Type the disk number on which this file resides: ', S)
ACCEPT 32, DISKNO
32 FORMAT (I1)
WRITE (1,12) FILNAM, DISKNO
GO TO 19
C
50 CLOSE (UNIT=1, DISP='KEEP')
STOP
END

38

Command Files

The command files execute the various routines. The following list de-
scribes them briefly; listings are given on the following pages.

RALTIM.COM

RPLOT.COM

COPY.COM

CRELST.COM

SEERAW.COM

SEEAUX

Additionally,

Runs the routines which unpack the raw altimetry
data, convert it to horizontal range and ground
height above sea level and plot it to show transect
of terrain.

Directs runs which only plot previously processed
data.

An auxiliary command file which copies the previous-
ly processed/edited data file named by the user (in
COPY.COM itself) to DLO and gives it a standard
name, for subsequent use by PLOT. (The technique
used here is: RPLOT.COM first calls the system ed-
itor to edit COPY.COM; using the editor, the user
places the name of the desired data file in COPY.
COM; then RPLOT executes COPY.COM, which actually
copies the data file to DLO.)

Runs CRELST, which creates a file on the first raw
data disk listing the raw data files, along with
the disk numbers on which they reside. (This file
is used by UNPACK.)

Runs SEERAW, which allows the user to inspect raw
data files.

Fortran routine; asks user if another raw data file
is to be inspected; if it is, a call is made to the
system subroutine SETCMD to rerun SEERAW.COM.

there are various command files which handle the editing,

compiling and linking of t 2 different routines and several FORTRAN
routines which are used by the above command files to display instruc-
tions to the user to mount floppy disks on the proper drives.

39

RALTIM.COM
Zkdkkkkkkkk

This command file directs the processing of the altimetry data,
from the unpacking of the raw data through the plotting of the

processed data.
hkhkhkkhkhkhkhkkkkhkkkhkrkhkhkhkhkikhkhkhhhkhkhkhhhkhhkhhkhhhkhkhhhkhkkhhhhhhhhkhhdrkkhhkhkhkhkhkhhkhohkhhh ki

INIT/NOQ SCR:
INIT/NOQ SDO:

!
.
|
.
|
.
|
.
|
.

Instruct the user to have the raw data files to be processed on
hand, to load the required floppy disks and to exit from the ed-

itor
I R R R R R R R R R R R R R E R R R E X R R R E R R R E R R R R R E R R E RS EEE SRR R EE R LR N R R

FORT/OBJ:SD0 :ALTIM.OBJ/CODE: THR/EXT/WA/LIST:SD0:ALTIM.LST COM:ALTIM.MS1

L

INK/EXE:SD0:ALTIM.SAV SDO:ALTIM.OBJ,SY:FORLIB

RUN SDO:ALTIM.SAV
DELETE/NOQ SDO: (ALTIM. *)

— e 5 e e e () 0= b= 0= o= T b e e e

R
!
!

I

Display the directory on the first raw data disk

IEZ R EEREEEEEE SRS SRR E R R SRR R LS R EEREREREEEEEEEEEES]

DIT/INSPECT DYO:DIRECT.ORY

Copy list of raw data files to SCR
khkhkkhkkkhkhkkhkhkhkkhkhkkkhkhkhkhkhkkhkhkkkhkdkkkhkkk

OPY DYO0:FILLST.RAW SCR:FILLST.RAW

Run the unpacking routine
kkhkkkhkhkkikkhhkkhkkkhkhkkhkhkkhkkkxk

UN DY1:UNPACK.SAV
Run the processing routine
khkhkkkkhkkhkkhkhkhhkkhkhkhhkkhkhhkhkhkkdkkk
UN DY1:PROCES.SAV
Run the plotting routine
khkkkhkkhkkhkhkkhkkkhkhkhkhkhhkhkkkk
NIT/NOQ VM:

RUN DY1:PLOT.SAV

40

RPLOT.COM
kokkokkokokkk

This command file directs the execution of a run where a previously

created processed file is plotted.
kkkhkhkkkkkkkhkkhkkhkhhkhkhkkkhkhkhkhhkhhkhkhkhkhkhkhkhkhkhhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkrhhkhhhkhkhkkhhhtdhkk

NIT/NOQ SCR:

Tell user to mount processing/plotting disk in DY1
khkkkhkkhkhkkkhkkhhkkhkhkkhkhkkkhkhkkhkkhhkhkhkhkhkhhkhhhhkhkhkhhkhhkhdhhkhkhktkkk

b b e Pt s e b = 4= 0

FORT/OBJ:SCR:ALTIM.OBJ/CODE: THR/EXT/WA COM:ALTIM.MS?2
LINK/EXE:SCR:ALTIM.SAV SCR:ALTIM.OBJ,SY:FORLIB

RUN SCR:ALTIM.SAV

DELETE/NOQ SCR:ALTIM. *

!

!

! Edit the auxiliary command file which copies the
! previously processed/edited file to a file in DLO
! with a standard name

! kkhkkhkhkkkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkhkhkkhkhhkhkkrdhkhkhkkhkhkhhhtkrhkhkkkhi
|

EDIT COM:COPY.COM

1

!

! Now run the command file that was just edited

1 khkkkkkhkkhkkkkhkhkkhkkhkkkhhhkhkhhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkkkkhkkkkk

1

@COM: COPY.COM

|

1

! Run PLOT

!

kkhkkkkkkk

INIT/NOQ VM:
RUN DY1:PLOT.SAV

41

COPY.COM

kkkkkkkkkkkk

This command file is edited by the user during execution; it copies
a previously processed/edited data file to DLO and gives it a stan-

dard name, for subsequent use by PLOT.
I R R R R R R R R R R E R R X R E XX EEEE SRR R IR SRS S SRR EEEE S SRS AR LR SRR & EEEE R SRS RS EE

DIRECTIONS TO USER:
kkhkkkhrkkhhkhhkkhkkixk

1. Type the name (including device) of the previously processed
data file to be plotted in the spaces indicated below (first
erase the name that is there now; the name may be less than 14
characters):

DEV : XXXXXX . XXX
OPY DLO:FLIT02.P01 DLO:PROFIL.DAT

2. If the file to be plotted is on a floppy disk, mount that disk
in drive DYO0 (since the processing/plotting disk is already in
DY1).

3. Exit from the editor (by typing PF1l,7 on the keypad, then

!
!
!
!
!
1
!
!
|
|
!
!
!
!
|
|
!
C
!
!
!
!
!
!
! E X I T, then ENTER on the keypad).

CRELST.COM
*kkkkkkkkk

1

!

!

! This command file runs CRELST, which creates a file on the first
! raw data disk listing the raw data files, along with the disk
1

!

!

!

numbers on which they reside.
R R E R R R R R R E R R E R R E R EE R EEE R EE R E R R R R SRR SRS EE SRS S LSS EEEEEEEE S S E S &

Tell user to mount first raw data disk in DYO
1
FORT/OBJ:SCR:CRELST.OBJ/CODE:THR/EXT/WA COM:CRELST.MS1
LINK/EXE:SCR:CRELST.SV1l SCR:CRELST.OBJ,SY:FORLIB
RUN SCR:CRELST.SV1
1
RUN DY1:CRELST.SAV
DIR/ORDER/FULL DYO:

42

SEERAW.COM
Kkkkkkkkkk

This command file runs SEERAW, which allows the user to inspect raw

data files.
IR R E SRS EEE R R E S EEE RS R E TR T X SRR E R R AR E S RS E R R TR R R LY R R X EEE X EE TR R R

Tell user to mount raw data disk to be inspected in DYO

and processing/plotting disk in DY1
LRSS AR E SR XS R EE R LSRR RS EEE R R R RS R NS ESEEEE R RS E R X R TR SR

!
1

!

!

!

1

!

INIT/NOQ SCR:
1

!

I

I

1

FORT/OBJ: SCR:ALTIM.OBJ/CODE: THR/EXT/WA COM:ALTIM.MS3
LINK/EXE:SCR:ALTIM.SAV SCR:ALTIM.OBJ,SY:FORLIB

RUN SCR:ALTIM.SAV

DELETE/NOQ SCR:ALTIM. *
|

Display directory of the disk in drive DYO
khkhkhkkkkhkhhkhkkhkhkhkhkhkkhkhkkhkkkkkhkkkkhkhkkkhkkhkhkkkk

IR/ORDER/FULL DYO:

Run SEERAW
khkkrkkxkxk*k

Use system editor to inspect the unpacked file
hkhkkhkkkhkkhkkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkkk

EDIT/INSPECT DLO:INSPCT.DAT

Delete the file just inspected from DLO
hkkkhkkkhhhkhkhohhkkhkhhkhhkhkhkhkhhkhhkhkhkhkhkkirthkththititt

DELETE/NOQ DLO:INSPCT.DAT

Inspect another raw data file?
khkkkkhkkhkkhkkhkhkkhkkhkhkhkhkhkkhkkkhhkkkdik

!

!

!

!

D

!

I

!

!

!

RUN DY1l:SEERAW.SAV
!

!

!

!

1

!

!

!

!

!

!

!

1

I

FORT/OBJ : SCR: SEEAUX.OBJ/CODE : THR/EXT/WA COM:SEERAW.AUX
LINK/EXE:SCR:SEEAUX.SAV SCR:SEEAUX.OBJ,SY:FORLIB
RUN SCR:SEEAUX.SAV

DELETE/NOQ SCR:SEEAUX.*

43

PROGRAM SEEAUX

C khkkkkkkkkhkkkkk
C
C This routine asks the user if he wants to examine another raw data
¢ file; if he does, a call is made to the system subroutine SETCMD to
C 1loop back and re-execute the command file SEERAW.COM.
C
C***
C
BYTE COMAND (15), REPLY
C
DATA COMAND/'@','C' ,'O','M',':','S','E' ,'E','R','A','W','.',
* lCl,lol’lMl/
C

C***

C
TYPE 10
10 FORMAT (////
* t5,'Do you want to examine another raw data file? (Y or N):
',$)
ACCEPT 11, REPLY
11 FORMAT (A1)

., IF (REPLY .EQ. 'Y') CALL SETCMD (COMAND)

STOP
END

Report Documentation Page

National Aeronautics and
Space Administration

1. Report No. 2. Government Accession No. 3. Recipient’'s Catalog No.

NASA TM-100687

4. Title and Subtitle 5. Report Date
A Computer Code to Process and Plot Laser May 1987
Altimetry Data Interactively on a _ —
Mic rocomput er 6. Performing Organization Code
723.0
7. Authorl(s) 8. Performing Organization Report No.
H. G. Safren and J. L. Bufton 8680419

10. Work Unit No.

9. Performing Organization Name and Address

Goddard Space Flight Center 11. Contract or Grant No.
Greenbelt, Maryland 20771

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Technical Memorandum

National Aeronautics and Space Administration !
Washington, D.C. 205”6—0001 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract
A computer program, written in FORTRAN, is described which uses a
microcomputer to interactively process and plot laser altimetry data
taken with a laser altimeter currently under development at the
Goddard Space Flight Center, Greenbelt, MD. The program uses a plot
routine written for a particular microcomputer, so that the program
could only be implemented on a different computer by replacing the
plot routine. The altimetry data are taken from an aircraft flying
over mountainous terrain. The program unpacks the raw data, processes
it into along-track distance and ground height and creates plots of
the terrain profile. A zoom capability is provided to expand the
plot to show greater detail, along either axis, and provision is made
to interactively edit out spurious data points.

17. Key Words {Suggested by Author(s}) 18. Distribution Statement

Laser altimetry, microcomputer Unclassified -~ Unlimited

Subject Category 17
19. Security Classif. {of this report} 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified Unclassified

NASA FORM 1626 OCT 86

